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Figure 1: Multiple users on a remote drone tour using the Constellation system share the control of a camera drone. (A) Each
user can specify points of interest and upvote other users’ point of interest. The three points of interests have 1, 2, 3 votes,
respectively, from 4 users. (B) Constellation plans a drone path that minimizes the total extra waiting time of all users.

ABSTRACT
Remotely controlled camera drones can support live, dynamic, and
interactive virtual tours for travelers to overcome distance, expense,
and health barriers. Yet, assigning one drone to one traveler may
incur unnecessary waste of resources, and an abundance of con-
current drones raises safety concerns. While sharing the input and
output of a single drone among multiple concurrent users can al-
leviate these limitations, standard control sharing protocols, such
as turn-taking, are often inefficient. We present Constellation, a
multi-user drone control system that synthesizes diverse user goals
and generates efficient flight paths for the group. It supports point-
of-interest specification on both static 3D environmental maps and
live camera views. The generated paths minimize all users’ total ex-
tra waiting time. A web-based study with 16 participants show that
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Constellation could help groups navigate to their points-of-interest
faster in comparison to the turn-taking baseline.
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1 INTRODUCTION
People enjoy traveling to alleviate daily stress and broaden their
world-views [11]. Although the concept of travel is primarily asso-
ciated with going to remote places, from the 19th-century travel
journals to modern Twitch1 travel live streams [32], virtual tourism

1Twitch: https://www.twitch.tv
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enables people to perceive traveling experiences with satisfying lev-
els of authenticity, despite not being there [35]. While virtual tours
often supplement later or earlier physical travel experiences [7],
they can also be vital for those who cannot travel because of time,
cost, and health reasons [24, 35]. For example, the environment
and geography education community employ virtual field trips to
offer accessible learning experiences to financially or physically
disadvantaged students [41, 46, 47].

Users consuming virtual tour experiences often prefer live video
streams over pre-recorded videos due to their higher level of per-
ceived authenticity [32]. The robotics community has explored live
video tours through remotely operated robots [37, 52], which offer
the additional benefit of direct control over what to see. Camera
drones offer uniquemobility and perspective benefits [33, 34, 38, 50],
as they are less constrained by barriers [2] and provide informa-
tive vantage points [38]. Recent advances in autonomous drone
navigation allow untrained users to remotely pilot camera drones
with ease [9, 17, 26, 48, 49, 53]. While most remote drone navigation
interfaces follow a one-user-one-robot paradigm, having one visitor
control one drone may result in a large crowd of drones at popular
tourism sites. Alarms have been raised about the energy waste of
an abundance of drones [14, 31] and the associated safety [3, 39]
and privacy [54] risks for local communities. A mechanism for mul-
tiple users to share the control of a drone can potentially mitigate
these concerns and make remote drone touring more friendly to
the environment and local communities.

In this paper, we present Constellation, a novel multi-user inter-
face for remote drone navigation. Constellation is based on a simu-
lated drone in virtual environments for prototyping interactions
and conducting preliminary evaluations. A significant challenge
for multi-user drone control in remote tours is how to accommo-
date the diversity in users’ goals while maintaining a reasonable
level of time efficiency. While turn-taking is a standard method for
handling heterogeneous user goals, previous work has noted its
relative inefficiency compared to an interface that supports multi-
ple synchronous inputs [5, 23]. Prior research in multi-user agent
control [19, 27, 44] applied voting schemes from social choice the-
ories [6] to combine multiple synchronous inputs into a single
command. These approaches use majority consensus to produce
a reliable or socially desirable aggregate input, but they have two
limitations for control sharing in drone tours. First, they either
discard or distort minority preferences. Second, they do not con-
sider factors other than preferences, such as user goal locations,
therefore producing less efficient plans.

Research in human-robot interaction has studied modeling user
utility for robot control, but mainly in single user scenarios [10, 21].
We apply user utility optimization to devise a novel multi-user
control sharing mechanism that accommodates diverse inputs and
balances considerations for user preferences and for physical real-
ities. More specifically, Constellation finds drone paths that min-
imizes the total extra waiting time of all users. Multiple people
can use the Constellation interface to simultaneously explore a
remote environment and specify their points of interest on 3D en-
vironment maps and camera live streams. Users can also efficiently
express their preferences by upvoting or modifying other peoples’
points of interest. The system constantly collects and synthesizes
their preferences to generate drone flight plans that accommodate

all the inputs (Figure 1). We also provides tour and environment
information to help users stay oriented during the tour.

We compared Constellation with a turn-taking baseline in a
group navigation task. The results from the two online study ses-
sions, each with eight concurrent users, validated the efficiency
benefits of our approach. We discuss future work on adapting Con-
stellation for real-world drone tours, and on designing multi-user
robot interfaces for other domains.

2 RELATEDWORK
Our work builds on previous research on human-drone interfaces
and multi-user agent control. Prior research has explored the ver-
satile roles of drones [1, 8, 20, 25, 26]. To alleviate pilots’ burden
during manual control [53], recent drone interfaces incorporate
designs to support stronger situation awareness from a second
drone [49], object-centric high-level commands [13, 30], and direct-
manipulation control through augmented reality [9]. Building on
prior human-drone interface designs, we explore drones’ new role
as a shared resource in virtual tourism. While our current imple-
mentation runs only in virtual environments, its workflow and
interface design builds on established real drone videography sys-
tems [17, 25, 43, 53] for practicality.

Researchers in internet robotics [19, 45] and online gaming [29,
42] have studied mechanisms for group control of a single agent for
resource sharing. Meanwhile, the human computation community
has experimented with various methods for aggregating commands
to achieve robust crowd robot control [27, 44]. Their approaches
typically leverage the consensus among user inputs to produce a
socially desirable aggregate command or filter out noise. To do so,
they apply various voting schemes from social choice theories [6],
including plural [19, 42], weighted [27], and Borda [44] votingmech-
anisms. As an alternative perspective, Higuera et al. [22] presents
a collective path planner that prioritizes shorter paths but does
not respect consensus. We propose a control sharing mechanism
that accommodates all inputs and achieves user goals efficiently by
considering both group consensus and goal locations.

3 CONSTELLATION: A MULTI-USER DRONE
INTERFACE

Constellation is a multi-user remote drone touring interface with
utility-optimization as its underlying control sharing mechanism.
It allows a user to join online with a group of peer travellers to
experience a remote environment through a live drone camera feed.
Users can control the drone together to explore the environment
interactively, reacting to ongoing changes such as live performances
encountered in remote sightseeing.

The user interface of Constellation has two main modes, the
Camera Stream mode and the 3D Map View mode. Both modes
incorporate a key widget named View Queue (Figure 2, next page).
Users control the drone through sending view requests.

In Camera Stream mode, users see a full-screen live stream from
the drone camera (Figure 2 left). Our prototype shows the vir-
tual camera feed from the simulated drone camera in high fidelity.
Scrolling the mouse wheel down on the camera stream turns on
the 3D Map View mode, which shows a 3D map of the surrounding
environment (Figure 2 right). We segmented the meshes in the 3D
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Figure 2: Overview of the Constellation interface. Left: the Camera Stream mode. Right: the 3D Map View mode with the
upvote and preview buttons in the callout. The View Queue is at the top in both sub-figure.

map into individual objects. In this view, users can roam freely on
the map using standard virtual camera manipulation techniques.
The user can return to the camera stream mode by clicking a button
(Figure 2, right). In our current implementation, the 3D Map View
is processed with a point-cloud-effect shader to simulate real-world
3D scans. The View Queue sits at the top of the screen on bothmodes
(Figure 2). It displays a queue of current view requests, arranged
by their position in the future flight path.

4 PATH PLANNING FOR DIVERSE USER
GOALS

After users specify their goals via the interface, Constellation gen-
erates a path using the utility optimization framework. The path
is updated constantly as new requests come in. Now we introduce
the utility optimization framework.

4.1 Path Planning as Utility Optimization
We can describe the formulation of collective drone path planning
as a utility optimization problem with three key components, the
decision variables and constraints, the user utility function, and the
objective function.

4.1.1 Decision Variables and Constraints. Formally, the path plan-
ning problem concerns with arranging the order of N view requests.
It can be viewed as a variation of the Travelling Salesman Problem
(TSP) [4]. We model it as an assignment problem, where N view
requests need to be assigned to N ‘slots’ that constitute the path.
We chose this formulation instead of common TSP formulations as
it enables a concise expression of our utility function.

To simplify the formulation that follows, we treat the starting
position of the drone as a view request v1. Given N − 1 more view
requests v2, ...vN and N slots on the path, the assignment can be
expressed as the planning vector x = (x11,x12, ...,xvv ) ∈ X, where

xi j ∈ {0, 1} ∀i ∈ {1, ...N }, j ∈ {1, ...N }, such that

xi j =

{
1 if view request vi is assigned to slot j
0 otherwise

The set X contains all assignment choices. A feasible path assign-
ment is constrained by

N∑
j=1

xi j = 1, ∀i ∈ {1, ...N } and

N∑
i=1

xi j = 1, ∀j ∈ {1, ...N } and x11 = 1

(1)

4.1.2 User Utility Function. As the first step in exploring user utility
in shared drone control, our utility model has a simple structure. It
is widely recognized by marketing research that people’s queuing
experience deteriorates as their time in the queue exceeds their
expected waiting time [12, 40, 51]. We assume that a user’s expected
waiting time T for a view request is the time needed to visit this
location if the drone would take the shortest path to fulfill all of her
view requests. We then use the difference between the actual time t
spent to fulfill a view request and the expected waiting timeT as the
cost in utility calculation. More specifically, when the drone fulfills
a view request, any user who has created or voted for this request
gains a fixed benefit of value д and pays the cost of their extra
waiting time t −T . That is, the utility π of a user for a single view
request being fulfilled can be written as π = д − (t −T ) = д − t +T .
T is a constant that depends on the drone position at the time of
planning and the locations of the view requests.

The preferences of any userui in the user setU with respect to all
N view requestsV can be represented with a N dimensional vector
pi = (pi1,pi2, . . . ,piN ), in which pi j = 1 if user ui has created or
voted for view request vj otherwise 0. We call a view request vj a
relevant request of user ui if pi j = 1. We further define a N by N
distance matrix D whose element di j denotes the distance between
two view requests vi and vj and assume a constant drone speed of
1. On a path where two consecutive slots q and q + 1 are assigned
to the view requests vm and vn , respectively, as user ui follows the
drone moving from slot q to slot q + 1, her incurred cost is the time
to travel between the two view requests dmn multiplied by riq , the
number of her unfulfilled view requests after visiting slot q. riq can
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be computed by

riq =
N∑
k=1

pik (1 −
q∑
j=1

xk j ), ∀i ∈ {1, . . .N }, ∀q ∈ {1, . . .N − 1}

The total utility πi of ui after all her relevant request fulfilled is the
summation of all the benefits gained, subtracted by the total time
cost incurred from traversing the path. Since the user may have
already waited for the view requests before the current round of
path planning, we add the existing values from the waiting time
vectorwi = (wi1,wi2, . . . ,wiN ), in whichwi j denotes the time user
i has already waited for the view requestvj .Ti j denotes the waiting
time for view request vj if the drone would travel the shortest path
that visit the view requests of ui . wi and Ti j is updated after every
round of path planning.

πi =
N∑
s=1

дpis −
N∑
j=1

wi j

−

N∑
n=1

N∑
m=1

N−1∑
q=1

N∑
k=1

pikdmn (1 −
q∑
j=1

xk j )xmqxn,q+1

(2)

The path planning problem given all view requests V can be
considered as finding a feasible path x ∈ X that maximizes some
objective function f (π1,π2, . . . ,πN ) of all user utility values.

4.1.3 Optimization Objectives. Previous empirical studies [15, 16]
examined people’s desired resource allocation principles in situa-
tions similar to our cases, where the participant is part of a group
to receive some resources but does know the exact amount that
she will receive. Their results suggest that individuals prefer the
principle that maximizes the average utility. Based on this finding,
we choose to find the path x ∈ X that maximizes the total utility of
the group for Constellation. Maximizing this this objective,

∑N
i=1 πi ,

effectively minimizes the total extra waiting time.

4.1.4 Algorithm. We use a branch-and-bound algorithm to search
for the path in near real-time for a small number of requests (< 15).
A promising future direction to improve performance is to adapt
the highly efficient heuristics found for TSP [4] to our problem.

5 USER STUDY
We compared Constellation against a straightforward turn-taking
baseline in a navigation task to study whether its efficiency advan-
tage holds in the face of usability challenges.

We recruited 16 volunteers (Maдe = 26, SDaдe = 3.7, 8 female)
from the local community to engage in two online sessions, each
with eight concurrent users. Since the study focuses on interface
usability, we chose an artificial target-finding task to control task
difficulty. We instructed participants to find and report the labels
for the landmarks in the experiment field, based on the provided
descriptions.

We conducted the study remotely using a within-subject design.
The participant completed the given navigation tasks in both the
Constellation condition and the turn-taking condition together
with seven other participants. The order of the conditions was
counterbalanced between sessions. The experiment field used was
a virtual theme park of world landmarks, where the 3D models

of nine landmarks were laid out in a 3 by 3 grid of 50m×50m in
dimension. Each landmark had one red and one blue target label
on them.

From the command logs, we calculated the time between the
start of the experiment and the submission of individual answers.
We also calculated the average extra waiting time based on the
participants’ target locations, which is different from the task com-
pletion time by a constant. The Constellation condition had an
apparent shorter average task completion time and extra waiting
time in both sessions (Table 1). Overall, Constellation’s average
completion time and average extra waiting time 28.1% and 40% less
than turn-taking. Constellation’s evident advantage in the results
demonstrated that its interface design could effectively support
users in leveraging the synchronous control sharing mechanism
and complete drone tours more efficiently.

6 DISCUSSION
The user utility perspective could be integrated with real-world
drone path planning approaches [18, 25, 36, 53] to achieve feasible
and safe paths that also accommodate diverse user inputs. Addition-
ally, much prior research on preferred resource allocation mecha-
nisms has focused on assigning concrete objects, such as food [28]
or drinks [16]. It would be worth studying desirable drone-sharing
mechanisms in a real drone tour setting in future work. Extensions
to our control sharing mechanism can benefit future multi-user
interfaces in other domains than drone touring. A direct application
could be coordinating patients’ non-critical delivery requests to be
fulfilled by assistive robots in caregiving facilities. Robots could
weigh the needs and locations of various items and deliver them,
minimizing the waiting times.

7 CONCLUSIONS
This paper proposed Constellation, a novel multi-user drone navi-
gation interface to serve diverse user goals in remote drone touring.
Its graphical user interface allows users to flexibly communicate
their interests by creating view requests or upvoting other users’
requests. The underlying mechanism synthesizes user requests to
generate efficient flight plans that minimize total extra waiting
time. A user study with 16 participants showed that the Constel-
lation systems could help groups navigate their points of interest
more efficiently than the turn-taking alternative. In future work, we
hope to develop more adaptive user models and apply similar multi-
user coordination approaches to other human-agent interaction
domains.

Table 1: Average task completion (TC) time and extra wait-
ing time for Constellation and turn-taking in session 1 (s1)
and 2 (s2).

Avg TC time Avg extra waiting time

Constellation (s1) 463s 269s
Turn-taking (s1) 617s 423s
Constellation (s2) 478s 284s
Turn-taking (s2) 692s 498s
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