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Figure 1: Adaptique switches the selection technique based on environmental and user-based factors, and considers multiple 
objectives for VR selection. In this example, the user attempts to select the light switch on the far wall to light up the room. (a) 
Since the light switch is small and far, the user has difficulty selecting it with normal RayCasting. (b) Adaptique continuously 
senses the environment and user state to find the most optimal selection technique for current use. (c) Adaptique switches 
the selection technique to StickyRay, snapping the ray to the nearest target to assist the user in accurately and comfortably 
selecting the light switch. 

Abstract 
Selection is a fundamental task that is challenging in virtual reality 
due to issues such as distant and small targets, occlusion, and target-
dense environments. Previous research has tackled these challenges 
through various selection techniques, but complicates selection and 
can be seen as tedious outside of their designed use case. We present 
Adaptique, an adaptive model that infers and switches to the most 
optimal selection technique based on user and environmental infor-
mation. Adaptique considers contextual information such as target 
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size, distance, occlusion, and user posture combined with four ob-
jectives: speed, accuracy, comfort, and familiarity which are based 
on fundamental predictive models of human movement for tech-
nique selection. This enables Adaptique to select simple techniques 
when they are sufficiently efficient and more advanced techniques 
when necessary. We show that Adaptique is more preferred and 
performant than single techniques in a user study, and demonstrate 
Adaptique’s versatility in an application. 
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1 Introduction 
Selection tasks in extended reality (XR) can be challenging in dy-
namic environments due to factors such as small or distant targets 
and occlusion [2]. Furthermore, XR environments often change 
rapidly, with virtual contents changing and users moving or alter-
ing their attention within the 3D space [40]. For example, a user 
might be selecting buttons on a large panel, which requires only 
a simple and easy selection technique. Then, they might shift to 
examining components within a complex 3D assembly file they just 
opened. Since these components are small and cluttered, the user 
needs a precise selection technique designed to target fine details 
in a dense environment. Later, they might interact with an IoT light 
switch on a distant wall to view a real-world object clearly. Because 
the switch is small and located far away from their reach, they need 
a technique that can effectively handle distant and small objects. 
These scenarios represent three distinct environments, making the 
use of a single technique for all tasks difficult. 

Previous works have addressed some of the selection challenges 
in XR, such as selecting small, distant, and occluded objects, or 
selection in a dense environment [58, 68] by commonly manipu-

lating the amplitude and width of targets to make pointing and 
selection easier. However, these techniques are often tailored to 
specific scenarios and become overly complicated and cumbersome 
when applied outside their intended context. Manually switching 
between techniques adds extra workload to the user, who must iden-
tify the current context and needs and then perform interaction to 
switch the technique. To alleviate the burden on users, researchers 

2 Related Work 

have proposed adaptive systems that change the current selection 
technique based on the environment [8, 35] or user factors [57]. 
However, these works only focus on a single objective for switch-
ing or require bespoke scoring algorithms that do not consider the 
different selection trade-offs (e.g., speed versus accuracy). 

We propose Adaptique, a novel multi-objective adaptive virtual 
reality (VR) optimization system that selects the real-time optimal 
pointing-based selection technique (Figure 1) based on environ-
mental and user factors. In contrast to previous work, Adaptique 
consists of multiple objectives based on established pointing-based 
performance metrics such as speed, accuracy, comfort, and familiar-

ity and their associated established models. This enables Adaptique 
to consider the different trade-offs for selection to holistically select 
the most optimal technique. Furthermore, using established per-
formance models as optimization objectives ensures reliability and 
compatibility across different techniques as opposed to bespoke 
scoring algorithms or machine learning models trained on small 
data sets. The developer only has to define how a technique affects 
the model inputs for a given target (i.e., target width and amplitude). 

To select the most optimal technique, Adaptique senses the con-
textual information of selectable targets and the user (Figure 1b) 
and sends the information to candidate techniques that apply their 

selection mechanism, which adjust the effective target width and 
amplitude. The adjusted values are then used as input for the op-
timization objectives, which calculate the current most effective 
selection technique for all selectable targets. Adaptique will then 
make a decision in real-time and switch the technique when the 
performance reaches the predefined threshold of improvement (Fig-
ure 1c). In our current implementation, we included a set of estab-
lished pointing-based selection techniques of normal RayCasting, 
StickyRay [23, 42], and RayCursor [3] as candidate selection tech-
niques. These techniques employ distinct mechanisms to modify 
the effective target size and amplitude compatible with Adaptique 
and together cover common scenarios of normal selection, small 
targets, dense environments, and target occlusion. 

We showcased Adaptique’s utility and applicability in a VR in-
door application where Adaptique smoothly switches the selection 
tool to a more suitable one when the content of the user’s interest 
changes and the task becomes hard with the current tool. Further-
more, our user study highlighted the importance of adaptivity, as 
using the same technique in different scenarios can lead to difficulty 
and negatively impact the user experience. We show how Adap-
tique outperformed the use of singular techniques in selection time, 
movement, and error rate, and was also preferred by the majority 
of study participants. In sum, the contributions of this work are: 

• Adaptique, a real-time multi-objective adaptive optimization 
system for selection techniques in VR. 

• An application with various selection tasks that showcases 
the versatility and utility of Adaptique in various natural 
selection contexts. 

• The results of a user study that demonstrate Adaptique ben-
efits, and show how Adaptique outperformed singular tech-
niques in multiple performance metrics and user preference 
when used across various environments for selection. 

Adaptique builds on common selection challenges in XR, the tech-
niques designed to address these challenges, human selection per-
formance models, and context-aware adaptive systems. 

2.1 XR Selection Techniques 
RayCasting is one of the common selection techniques in the XR 
due to its ability to select targets beyond the user’s reach by point-
ing with a ray extending from the user’s hand or controller [36, 46]. 
However, selecting a small or distant object requires higher accu-
racy because of its small visible area and the tremor of the hand 
amplified along the ray. In addition, in dense environments, tar-
gets may be occluded, resulting in the requirement of physically 
changing the point of view to be able to see the target. Dense envi-
ronments also increase the chance of erroneous selection due to the 
proximity of targets to one another. To address these challenges, 
various interaction techniques have been proposed. 

To enhance the selection of small targets in the 3D space, re-
searchers have proposed techniques that dynamically enlarge the 
size of objects to expand the interactable area [1], progressive re-
finement techniques that require steps following the initial action to 
improve precision [24, 33, 34, 47], snapping mechanisms to decrease 
the precision requirement by enlarging the effective size [21, 42, 58]. 

https://doi.org/10.1145/3746059.3747790
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Other works have tackled the problem of selection in dense envi-
ronments. In addition to the previously mentioned progressive 
refinement techniques that also help disambiguation in dense envi-
ronments, some approaches use extra degrees of freedom to specify 
the depth of the target. For example, Depth Ray [24], RayCursor [3], 
ClockRay [64], and Alpha Cursor [68] utilize an extra cursor along 
the ray that is controlled by the forward-backward movement of the 
hand, swiping on the trackpad, or wrist rotation. MultiFingerBub-

ble [14] uses multiple rays of individual fingers to select between 
nearby objects by flexing the corresponding finger. Other methods 
use visual aids, such as mirrors, that display occluded objects from 
different perspectives and make them visible [37]. 

Although these techniques make the selection task easier in their 
designed cases, their standalone use can be overly complex or inef-
ficient when applied outside of their intended context. Adaptique 
builds on their individual strengths by embedding them within 
a context-aware adaptive system, allowing each technique to be 
leveraged where it works best in dynamic XR applications. 

2.2 Human Performance Models on Selection 
Tasks 

Researchers have developed various models to evaluate and predict 
user performance of pointing selection tasks, focusing on speed, ac-
curacy, and comfort. We evaluate these factors using Fitts’ Law [19] 
for speed, the end-point distribution model [67] for accuracy, and 
the Consumed Endurance model [29] for comfort. 

In Fitts’ law, the predicted time needed to select a target based 
on the target’s distance and width is formulated as 𝑀𝑇 = 𝑎 + 𝑏 · 
𝑙𝑜𝑔2 ( 2𝐴 

𝑊 ) [19]. Here, 𝐴 represents the amplitude of movement to 
the target, 𝑊 is the width of the target along the axis of motion, 
and the constants 𝑎 and 𝑏 are determined by empirical linear re-
gression. The logarithmic term is the index of difficulty (𝐼 𝐷) of the 
task. Though originally applied to 1D selection tasks, it has shown 
good applicability higher dimension spaces. For example, Shannon 
formulation defined the movement time as 𝑀𝑇 = 𝑎 +𝑏 ·𝑙𝑜𝑔2 ( 𝐴 

𝑊
+1). 

To capture the target geometry, W’-model adjusts the definition 
of 1D width as the cross-section width along the direction of cur-
sor movement [43]. We adopted this model due to its simplicity, 
its ability to deal with non-rectangular geometries, and its good 
fitting result in 2D tasks. In the virtual environment, the Shannon 
formulation has been used in raycasting tasks because raycasting 
does not require z-axis movements [21] with two rotation axes as 
its dominant degree of freedom (DoF) [2]. The target width and 
amplitude are represented in angular size form to consider the 
depth [67]. For interaction that requires a higher degree of freedom 
in translation, such as virtual hand pointing, the 3D Fitts’ Law is 
used more frequently [13, 54]. 

Endpoint distribution models describe selection behaviors by 
analyzing the spatial distribution of endpoints during pointing tasks. 
In XR, models such as the EDModel explore how different factors 
such as target size, target shape, movement amplitude, and target 
depth affect the distribution characteristic based on a bivariate 
Gaussian distribution [67]. Combined with Bi’s method [6], this 
model can estimate selection accuracy by integrating the probability 
density function for the target region into its control space. 

In addition to time and accuracy, user performance is influenced 
by physical factors such as fatigue and overall comfort. For example, 
the gorilla arm effect occurs when people feel fatigued in their arms 
and shoulders after performing mid-air interactions for a long time. 
Models such as Consumed Endurance (CE) [29] and RULA [45] 
characterize this ergonomic factor from a biomechanics perspective, 
relying on physical data such as user postures, arm weights, muscle 
endurance, and other relevant information. In our work, we utilized 
these models to evaluate the most suitable selection techniques for 
the context regarding speed, accuracy, and comfort. 

2.3 Adaptive Systems for Interaction 
Techniques 

Recent studies have increasingly highlighted the importance of 
context-aware adaptive systems in XR interactions [10, 11, 17, 18, 
22, 26, 30, 41, 59], especially in mixed reality environments due to 
their connection to the dynamic physical world. These works have, 
for example, adapted the layout of virtual content for various kinds 
of factors, such as the relationship between virtual and physical 
objects [10, 59], ergonomics [17, 30], physical space [11], or user’s in-
tention [22]. These systems are typically implemented through com-

binatorial optimization, rule-based systems, or data-driven methods 
such as reinforcement learning. Most XR adaptation systems focus 
on adapting the layout of virtual content [10, 11, 17, 18, 41], where 
elements can be freely moved and placed. In contrast, our work as-
sumes that the content and interactable targets in XR are relatively 
static, as they may represent physical objects that users want to 
keep intact, with minimal changes to the surrounding environment. 
Instead, we believe that the user and their interaction should adapt 
to the current context. Inspired by layout adaptation systems, we 
employed a multi-objective optimization framework for adapta-
tion due to its simplicity, scalability, and ability to balance multiple 
objectives in a controllable and interpretable way [50]. 

There has been limited exploration into adapting selection tech-
niques or selecting appropriate input tools in XR. Although some 
early efforts have explored the adaptation of selection techniques in 
virtual environments, these studies either rely on rule-based switch-
ing tied to fixed condition, focus on user preference modeling, or 
remain conceptual without an implemented system [8, 35, 49]. As 
such, they do not support generalizable, real-time switching based 
on quantified trade-offs across multiple performance objectives. 
Other works have adapted the modality of selection techniques 
based on availability or stability. For example, Sidenmark et al. [57] 
switched from gaze input to a controller or head-based input when 
the gaze signal quality dropped, and Yigitbas et al. [65] switched 
to gaze input when controllers were unavailable. More recently, 
selection techniques have been included as part of XR layout adap-
tation systems [11]. In contrast, Adaptique builds on these works 
in multiple ways: (1) we consider multiple adaptation objectives to 
reflect selection trade-offs; (2) we use established performance mod-

els as optimization objectives to simplify comparability between 
techniques; and (3) we integrate these models with real-time envi-
ronmental sensing of selectable candidates and their relationships 
with each other for online adaptation. 



UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Lai et al.

Figure 2: The Adaptique pipeline extracts user and environmental input, applies the working mechanism of selection techniques 
to calculate model input for each selectable object and technique, aggregates the objects’ objective scores for each technique, 
finds the optimal technique for the interactable objects, and switches the technique if the performance gain is above a threshold. 

3 Adaptique 
We define the problem of adapting the interaction technique as fol-
lows: given a virtual environment with all inferred selection targets, 
the system will choose the interaction technique that maximizes the 
performance of the selection task in terms of four objectives: speed, 
accuracy, comfort, and familiarity. Speed, accuracy, and comfort 
are three common metrics used to evaluate interaction technique 
performance [5]. However, while advanced interaction techniques 
improve performance in selection tasks, they often come with trade-
offs such as increased complexity in control and limited interaction 
expressiveness (e.g., lack of continuous interaction). Overcoming 
these drawbacks necessitates user familiarity [55]. Therefore, we 
consider it as one of the inputs in our system. We quantify these 
metrics and give objective scores to aid in our optimization process. 
The system would then post-process the data and switch the inter-
action technique for the user. As illustrated in Figure 2, the system 
processes each frame by: 

(1) Acquire the targets within the interaction space. 
(2) Extract contextual information from the user and targets. 
(3) Apply the working mechanism of each candidate technique 

on all selectable targets to use as model objective input. 
(4) Calculate and aggregate the objectives for each candidate 

technique. 
(5) Activate a switch if a more optimal one shows a consistent 

improvement in overall performance. 
Sections 3.1–3.3 detail each pipeline component, while Sections 3.4– 
3.5 explain how specific techniques are integrated and describe 
system implementation. 

3.1 Extracting Contextual Information 
We first extract contextual information from the environment and 
the user that will be used as input for adaptation. Pointing-based se-
lection techniques in XR can be broadly categorized into ray-based 
techniques, which are effectively 2D techniques in the pointing 
space, and techniques that use a 3D point, thus incorporating depth 
information to infer the pointed target [2]. To support both types of 
techniques, we extract both the 2D and 3D information of selectable 
targets. We assume that the adaptation should be based only on the 

user’s temporal area of attention, ensuring that only interaction-
relevant targets are considered for adaptation and reducing unnec-
essary computation. Accordingly, we define the interaction space 
as a cone originating from the pointing direction, with a radius 
forming an angle of 𝑟𝑐 degrees [57]. All objects within this area are 
included as input for adaptation. 

After defining the set of objects for interaction, we extract the 
most fundamental contextual information to serve as the basis on 
which techniques apply their working mechanisms to calculate 
model objective input. This includes the positions and sizes of all 
targets in both 3D and 2D space relative to the controller. For 3D 
information, we provide the 3D target positions, shapes, and sizes 
relative to the controller position. For 2D information, we project all 
targets’ 3D meshes onto a plane perpendicular to the controller’s 
pointing direction. We adopt controller-based projection, as oc-
clusion relative to the controller is more relevant for determining 
technique applicability, and targets visible to the eyes may still 
be unreachable given the controller’s pose. The projected targets 
are scaled to ensure that their visual size remains consistent. To 
incorporate occlusion, we calculate a convex mesh of the projected 
vertices to form an outline polygon using CGAL [60]. The outline 
polygon is then clipped by other overlapping polygons that occlude 
the object using Clipper2 [31]. Finally, we recalculate the target 
centroid (𝑐 ) using the final clipped polygon. For each target, we pro-
vide the final 2D outline polygon that defines its activation region, 
along with its position relative to the controller position. 

In addition, we incorporate user-side information, including the 
user’s posture and their current selection technique, as the adap-
tation input. Since most VR systems provide tracking only via 
controllers and the head-mounted display (HMD), we estimate the 
user’s current posture using inverse kinematics based on the HMD 
and controller position. Both the 2D and 3D environmental infor-
mation are updated every frame along with the user information. 

3.2 Objectives 
To comprehensively consider and balance different interaction 
goals, Adaptique leverages multiple objectives to find the over-
all best technique given the contextual information provided. Each 
objective defines a set of parameters that each interaction technique 
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has to provide for every interactable object to calculate objective 
scores. Then, all objective scores are calculated for each target and 
interaction technique. The objective scores of the techniques are 
then aggregated to a final overall score for each technique. 

In our implementation of Adaptique, we use common perfor-
mance metrics and formalize them with established models of hu-
man performance and movement. The system can be expanded to 
include more objectives and individual objectives can be altered or 
replaced to better suit the chosen interaction techniques. 

3.2.1 Speed. Speed (𝑆𝑆 ) is one of the most common performance 
metrics and selection objectives. We define speed score using the 
widely adopted index of difficulty (ID) formula in the Shannon 
formulation of Fitts’ Law 

𝑆𝑆 = −𝑙𝑜𝑔2 ( 
𝐴 
𝑊 

+ 1), (1) 

which states that the difficulty of selection, and thus the expected se-
lection time, increases with larger movement amplitude and smaller 
target width [43]. The formula relies on two main parameters, move-

ment amplitude 𝐴, and the target size 𝑊 , both defined in visual 
angular space(Figure 3a). For this work, we define 𝑊 as the ef-
fective width of the target activation region along the pointing 
path. The pointing path is defined as the angular trajectory from 
the current pointing direction to the target centroid, which has 
been shown to play a greater role than its visual boundaries on 
selection time [25, 61]. The movement amplitude 𝐴 is the angular 
distance the ray needs to travel along that path to the aiming center 
of the target, which we define as the centroid of the activation 
region. To ensures that higher performance yields higher scores, 
we add a negative sign to the objective. Finally, note that Fitts’ Law 
commonly requires the fitting of additional parameters (𝑎 and 𝑏) 
based on performance data to predict the selection speed. As all 
techniques in our implementation are based on controller pointing, 
we assume that these remain consistent between techniques, thus 
removing the need for fitting additional parameters and collect-
ing user data. These should be added if Adaptique is expanded to 
multiple pointing modalities. 

3.2.2 Accuracy. Accuracy (𝑆𝐴 ) is another critical metric that re-
flects the reliability of selection. We adopt the EDModel by Yu et al. 
[67]. The EDModel defines an endpoint distribution for pointing-
based selection. To calculate the probability of successful selection, 
we integrate the distribution with the target activation boundary, 
which we define as our accuracy score: 

𝑆𝐴 = 
∬ 

𝐷 

1 
2𝜋 𝜎𝑥 𝜎𝑦 

exp 

 
− 
(𝑥 − 𝜇𝑥 )2 

2𝜎 2 
𝑥

− 
𝑦 2 

2𝜎 2 
𝑦

 
𝑑𝑥𝑑𝑦. (2) 

The variables 𝜇𝑥 , 𝜎𝑥 , and 𝜎𝑦 are derived via regression using 
empirical endpoint data [67]. In the integral of Equation 2, we define 
the 𝑥 -axis as the direction of movement, the 𝑦-axis as perpendicular 
to the direction of movement, and 𝐷 as the target activation region. 
We use the same definition for the direction of movement as in our 
speed objective. To simplify the integration, we approximate 𝐷 with 
a rectangle bounded by coordinates (𝑥 1, 𝑥2, 𝑦1, 𝑦2)–the intersection 
points of the activation region boundary with the axes (Figure 3b). 
To derive a closed-form approximation, we leverage the integral 
identity of the Gaussian distribution over a bounded interval, which 

can be expressed using the error function (erf). The error function 
is defined as erf(𝑧 ) = 2√

𝜋 

∫ 𝑧 
0
𝑒 −𝑡 

2 
𝑑𝑡 , representing the cumulative 

distribution of a standard normal random variable. By substituting 
the limits of integration corresponding to the boundaries of the 
activation region 𝐷 , the double integral in Equation 2 is simplified 
into a product of one-dimensional error function terms for both 
the 𝑥 -axis and 𝑦-axis, expressed as: 

𝑆𝐴 = 
1 
4 

 
erf 

 
𝑦1 √ 
2𝜎𝑦 

 
− erf 

 
𝑦2 √ 
2𝜎𝑦 

  
erf 

 
𝜇 − 𝑥 2 √ 
2𝜎𝑥 

 
− erf 

 
𝜇 − 𝑥 1 √ 
2𝜎𝑥 

 
. 

(3) 

3.2.3 Comfort. Comfort plays a vital role in the usability of VR, as 
physical fatigue, commonly referred to as the gorilla-arm effect [7], 
can significantly affect user performance. To define comfort (𝑆𝐶 ), 
we adopt a modified Strength metric from the Consumed Endurance 
(CE) model to quantify arm fatigue caused by selection [29]. In the 
CE model, the torque exerted on the shoulder must counteract 
gravitational torque 𝑔: 

𝑇𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 = | |𝑟 arm ×𝑚 𝑔| |. (4) 

Here, 𝑟arm is the distance from the shoulder joint to the center 
of mass of the arm, and 𝑚 is the mass of the arm. Since users 
need to move their arms to reach a target, we calculate the shoulder 
torque based on predicted user poses during pointing. For simplicity, 
we assume that users will rotate their forearm toward the aiming 
center of the target (as defined in subsubsection 3.2.1) at a constant 
rotational speed, keeping the elbow fixed and aligning the ray with 
the forearm. While simplified, this approach captures overall fatigue 
trends and is robust to inaccuracies due to Adaptique’s continuous 
score recalculation as users adjust posture. Furthermore, we know 
that longer interaction time requires more energy and can lead to 
fatigue when endurance limits are reached [29]. To quantify this 
effect of time in energy, we sum shoulder torques from user poses 
along the pointing trajectory, sampled at 𝛽 -degree increments from 
the initial posture (defined in subsection 3.1) to the final target 
orientation (Figure 3c). This total exertion is then negated to yield 
the comfort score: 

𝑆𝐶 = − 
∑︁ 

pos𝑖 

| | 𝑇
shoulder,pos𝑖 

| |. (5) 

3.2.4 Familiarity. Although an advanced technique may be more 
efficient according to the defined objectives, users may prefer sim-

pler techniques when sufficient to reduce effort and cognitive load. 
To capture this, each technique is assigned a “familiarity” score: 

𝑆𝐹 = 𝑆𝐹 , 𝑡 𝑒𝑐ℎ if Technique = 𝑡 𝑒𝑐ℎ. (6) 

This score reflects the added complexity associated with ad-
vanced selection techniques and how they may limit interaction 
in qualitative ways, which is a trade-off between performance and 
usability. For example, a technique designed for occluded selec-
tion may rely on more interaction steps than normal pointing and 
include mechanisms that alter the typical pointing user experi-
ence by, for example, only supporting discrete selection and not 
continuous targeting [3, 47]. Therefore, simpler techniques that 
align more closely with traditional pointing are expected to have 
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Figure 3: Scoring parameters used for objectives (a) Speed, (b) 
Accuracy, and (c) Comfort. The grey sphere is the target. 

higher familiarity scores than advanced techniques that require 
more interaction steps [55]. In our implementation, we give each 
candidate technique a constant value 𝑆𝐹 , 𝑡 𝑒𝑐ℎ based on pilot testing 
in simple selection tasks. In the future, we envision the potential 
for individual adaptation based on user exposure and performance 
with each technique [49]. 

3.2.5 Normalization and Aggregation. To ensure that objective 
scores are comparable and measured on a consistent scale, we 
normalize these scores using Min-Max normalization, where the 
minimum (𝑠𝑚𝑖𝑛 ) and maximum (𝑠𝑚𝑎𝑥 ) represent the theoretical 
limits of each objective model. We consider extreme cases in our 
implementation for limits that do not have a theoretical bound. 
For example, we consider the smallest target size based on the dis-
play limitations and the largest target amplitude as the angle of 
the interaction region cone (𝑟𝑐 ), and the largest possible motion at 
the most strenuous user position. For special cases such as when 
an object’s activation region is zero due to occlusion, we assign 
the minimum value as the target is unselectable. To reduce noise 
caused by environmental or user factors, we apply an exponential 
smoothing factor to all objectives calculated for each target and 
technique, defined by a smoothing factor 𝛼 . Therefore, the score of 
each objective in the time frame 𝑡 is defined as 

𝑆𝑡 = 𝛼 × 

 
𝑠
obj𝑖 

/𝑁 − 𝑠𝑚𝑖𝑛 

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛 
+ (1 − 𝛼 ) × 𝑆𝑡 −1 . (7) 

To aggregate the effects of all objects within the interaction space 
and into a single representative value, we calculate the average 
of each objective score across all objects within the interaction 
space. This implies that each object is treated equally important 
for optimization. In future versions, weighted averages together 
with target prediction approaches [12, 28] could be deployed to 
give objects that are more likely to interact with a higher priority. 

3.3 Technique Switching 
To consider the comprehensive results of the objectives for deciding 
the most optimal selection technique, we calculate a weighted sum 
of the scores and select the one with the maximum overall score: 

Optimal = argmax 
𝑡 𝑒𝑐ℎ 

(𝑘𝑆 × 𝑆𝑆 + 𝑘𝐴 × 𝑆𝐴 + 𝑘𝐶 × 𝑆𝐶 + 𝑘𝐹 × 𝑆𝐹 ) . (8) 

Designers can give the objectives different weightings (𝑘 ) depending 
on user tasks or contexts. For example, in a password input task, 
designers might want to prioritize accuracy and therefore give a 
higher weight to the accuracy objective. 

Finally, to activate a switch in the interaction technique, we en-
sure that the optimal technique is optimal for 𝑛 frames within a 

𝑤 -frame window to ignore brief and sudden technique switches. 
Within these 𝑛 frames, the difference between the most optimal 
technique and the current technique must be greater than 𝑡𝑜 . Al-
though this introduces a minor delay, we posit that users will be 
more susceptible to technique switches if the switches are only 
performed when needed. 𝑤 , 𝑛 and 𝑡𝑜 can be adjusted to tune the 
responsiveness and sensitivity of switching. We applied haptic and 
audio feedback to help users notice technique switches. The con-
troller and ray also change to a unique color for visual feedback. 
These design choices aim to mitigate distraction and preserve user 
awareness in an automatic switching system. 

3.4 Selection Techniques 
A significant number of selection techniques have been proposed 
for XR [2] and the selection techniques included in the optimization 
will have a significant impact on the Adaptique user experience. 
We chose selection techniques based on a set of criteria and as-
sumptions: (1) the techniques should be pointing-based and the 
working mechanism should alter the target width and amplitude 
to be compatible with our implemented objectives; (2) the tech-
niques should cover a range of selection scenarios to benefit from 
adaptation and switching; (3) we should limit the number of tech-
niques to only one per selection scenario to limit the required user 
training and confusion due to switching between a large set of 
techniques; and (4) the techniques should not require extra sens-
ing, hardware, or modalities beyond a typical VR controller. Our 
version of Adaptique is implemented with three controller-based 
pointing techniques: RayCasting, StickyRay, and RayCursor. These 
were chosen to cover a wide range of pointing scenarios, from 
regular pointing to small targets, dense environments, and occlu-
sion. Although our current implementation focuses on these three 
techniques, Adaptique can be extended to incorporate additional 
techniques. To integrate these techniques into Adaptique, the selec-
tion technique must define 𝑊 , 𝐴 and (𝑥 1, 𝑥2, 𝑦1, 𝑦2) for every target 
in the interaction space. Each technique must also define 𝑆𝐹𝑖 for the 
familiarity objective. In the following section, we introduce each 
technique included and explain how these variables are derived to 
support objective computation. 

3.4.1 RayCasting. RayCasting represents the most basic pointing 
technique in which the user points with a ray originating from the 
controller and the target hit by the ray is highlighted for selection. 
Due to its simplicity and popularity in 3D interaction, we treat it 
as a base case for selection. We define 𝐴 as the angular distance 
from the current pointing direction to the target center in 2D space 
(subsection 3.1), and 𝑊 as the angular width of the object along the 
pointing direction; 𝑥 1 and 𝑥2 denote the entry and exit points of the 
2D object along the pointing direction, while 𝑦1 and 𝑦2 correspond 
to the intersections of the object’s outline with a line perpendicular 
to the pointing direction and passing through the target center 
(Figure 4a). For completely occluded targets (i.e., those with no 
visible activation region in the 2D projection due to occlusion) 
we assign the minimum score. However, users may change their 
point of view to reveal such targets, and the system reflects these 
changes as it continuously adjusts in real time during selection. 
Despite RayCasting being the most widely used technique, users’ 
inherent hand tremors can result in instability in pointing accuracy, 
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Figure 4: Context score implemented for 3 techniques (a) 
RayCasting, (b) StickyRay, and (c) RayCursor. The lower fig-
ure visualizes the effective size (𝑊 ) and amplitude (𝐴) of the 
blue target. The upper figure shows the projection of the 
activation region of the target. 

particularly when selecting small objects. Additionally, when the 
number of objects in the environment increases, selection becomes 
more difficult due to the close proximity of objects and occlusion. 

3.4.2 StickyRay. We included StickyRay as a second technique for 
small target selection. StickyRay is based on the Bubble Cursor 
metaphor [23], where the object nearest to the pointing direction 
is highlighted for selection. This mechanism expands the effective 
width of each target to a region that together builds a Voronoi 
diagram, thus making easy selection of small targets. To show the 
current closest object, a secondary ray bends toward it [58]. We 
used the angular distances from the pointing direction to the tar-
gets to decide the current closest target, as it has been shown to 
be the best performing version in 3D settings [42]. As such, the 
object activation region is the space in which the ray forms the 
smallest angular distance to the object compared to all other objects 
(Figure 4b). This is equivalent to computing a Voronoi region in 
the projected 2D space, where distances are measured by angular 
distance to the ray. We use Qhull [4] to find the 2D Voronoi region 
and then clip it by the interaction space. We first find the two inter-
section points 𝑝1 and 𝑝2 of the line of movement and its projected 
2D Voronoi region. Then we get 𝐴 as the angular distance from the 
origin to the centroid point of the Voronoi region, and 𝑊 as the 
angular distance between 𝑝1 and 𝑝2. 𝑥 1, 𝑥2, 𝑦1, and 𝑦2 are defined 
as with RayCasting but instead using the Voronoi region as target 
borders. 

While it is easier to select small targets compared to RayCasting, 
StickyRay can be unintuitive, as it encourages pointing outside 
the visual boundaries of the target. Furthermore, a consequence 
of the Bubble Cursor mechanism is that a target will always be 
highlighted for selection, which may not be preferable depending 
on the context of use. Finally, although StickyRay is proficient in 
selecting small targets and selection in sparse environments, its 
benefit diminishes in crowded environments and occluded targets. 

3.4.3 RayCursor. To handle dense environments and target occlu-
sion, we included RayCursor, where the user controls a cursor on 
the ray by swiping on the controller touchpad to select targets at 
different depths [3]. Like StickyRay, RayCursor has a proximity 
selection mechanism that will pre-select the object nearest to the 
cursor to improve performance in selecting small or distant targets. 
To minimize the need for swiping, the technique has a snapping 
mechanism that moves the cursor immediately to the depth of the 
first pointed object’s surface. We chose the semi-auto version of 
RayCursor with the VitLerp transfer function for cursor movement, 
as it was shown to be the highest performing version [3]. The 
semi-auto version disables the snapping mechanism when users 
manually control the cursor through swiping, and reactivates after 
the trackpad has been released for more than one second. Since 
RayCursor allows selection either by ray movement alone or in 
combination with trackpad swiping, its movement is difficult to 
define. Therefore, we only consider the controller movement for 
modeling to simplify the calculations. To calculate 𝐴 and 𝑊 , we 
first compute a 3D Voronoi region based on the provided 3D space 
using QHull [4]. We then project the 3D Voronoi regions to the 
control space and calculate 𝐴 and 𝑊 as in other techniques while 
ignoring occlusion. 𝑥 1, 𝑥2, 𝑦1, and 𝑦2 are defined as with RayCasting 
and StickyRay but instead using 3D Voronoi projected to control 
space (Figure 4c). 

The RayCursor provides easier selection in dense and occluded 
environments as it leverages additional depth information for selec-
tion. However, the additional interaction steps necessary increase 
its complexity compared to RayCasting and StickyRay. 

3.5 Implementation 
We implemented Adaptique in Unity. We used the HTC Vive Pro 
Eye which has a 110◦ 

FOV and a 2880 × 1600 resolution and the 
Vive controller for pointing input. The controller trackpad was 
used to control the cursor for RayCursor and the trigger was used 
to select targets. We used the built-in Unity Inverse Kinematics 
library to generate user postures. We relied on previous studies to 
define values for objective parameters that require empirical values. 
For the accuracy objective, we relied on previous studies by Yu 
et al. [67] to establish values for the endpoint distribution model: 
𝜇 = −0.1441 × 𝑊 + 0.2649, 𝜎𝑥 = 0.0066 × 𝐴 + 0.1025 × 𝑊 + 0.2663, 
and 𝜎𝑦 = 0.0085 ×𝐴 +0.0679×𝑊 +0.1437. For the comfort objective, 
we used the equation specified by Hincapié-Ramos et al. [29] to 
calculate the center of mass for r and 𝑚. As for the input data for 
body parameters we used the average human data for simplicity, 
specified by Freivalds [20]: 33cm long upper arm weighing 2.1 kg 
with the center of mass located at 13.2cm; 26.9cm long forearm 
weighing 1.2 kg with the center of mass located at 11.7cm; 19.1cm 
long hand weighing 0.4kg with the center of mass located at 7cm. 

4 Application 
To show Adaptique’s performance in dynamic settings, we devel-
oped an indoor VR environment where users interact with IOTs, 
books, food, and UI elements that have different sizes, arrangements, 
and density. Adaptique is designed to responsively and smoothly 
switch the selection technique as the user’s focus shifts. 
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Figure 5: Adaptique chooses different techniques for different scenarios in the application, such as interacting with (a) IOTs on 
the far wall, (b) books layout on the nearby bookshelf, (c) books stacked on the coffee table, (d) IOTs on the side, (e) ingredients 
in the cluttered kitchen, and (f) UI panel in front of the users. 

In this app, users can point to an interactable target, which dis-
plays a brief command description (e.g., ‘turn on the light’). By 
pressing the trigger button on the controller, the command is exe-
cuted. The application and its interactions are designed to represent 
common selection scenarios found in VR environments. Adaptique 
was developed as specified in section 3. We applied the following 
objective weightings: 𝑘𝑆 = 0.5 for speed, 𝑘𝐴 = 0.2 for accuracy, 
𝑘𝐶 = 0.15 for comfort, and 𝑘𝐹 = 0.15 for familiarity. We applied 
the following normalized familiarity scores: 𝑆𝐹 , RayCasting = 0.57, 
𝑆𝐹 , StickyRay = 0.33, 𝑆𝐹 , RayCursor = 0.1, and the following parame-

ters: interaction space cone with radius 𝑟𝑐 = 20◦ 
, smoothing factor 

𝛼 = 0.8, the threshold of 𝑛 = 15 number of frames with improve-

ment above 𝑡𝑜 = 0 within 𝑤 = 20 windows, and the rotational 
increments of 𝛽 = 1◦ 

to derive interaction postures. These pa-
rameters are chosen based on informal pilot testing to ensure the 
objectives are balanced, the switching is not too sensitive, and no 
ambiguity on the decision of the most optimal technique. 

To exemplify the benefits of Adaptique, we detail a walkthrough 
of the application (see Video Figure). In the living room of the 
virtual house, the user first points to the light switch on the wall, 
attempting to turn on the light. Since it is too far away and small, 
they struggle to select at the beginning. Adaptique continuously 
senses the environment and user’s state and immediately switches 
RayCasting to StickyRay. StickyRay snaps the ray to the light switch 
and makes the selection easier (Figure 5a). Afterward, they want 
to pick a book to read. There are books laid out on the shelves and 
stacked on the table. Adaptique smoothly switches to RayCasting 
when the books are large enough for easy selection (Figure 5b), and 
switches to RayCursor when the book is occluded (Figure 5c). The 
user controls the depth of the cursor on the trackpad to pick the 
book hidden behind. With the responsive assistance of Adaptique, 
they can precisely select the book to read. They select a sandwich-
making guide and decide to go to the kitchen to check the required 
ingredients. On their way to the kitchen, they turn off the light and 
TV to save electricity. Adaptique chooses the simplest RayCasting 
because the IOTs are near and big, thus easy to select (Figure 5d). 

The kitchen is cluttered with food and kitchenware. Adaptique 
chooses RayCursor to handle the dense environment (Figure 5e). 

This allows them to easily pick the tomato in the stack of fruits, the 
piece of toast on the cutting board with a blanket of bread around, 
and the bottle of olive oil arranged on the top cabinet. After they 
check all the food ingredients, they find that ham and cabbage 
are out of stock. Therefore, they open an online grocery shopping 
app to order them. Since the UI buttons on the pop-up panel are 
designed for easy interaction, Adaptique picks RayCasting for easy 
interaction (Figure 5f). They select the ingredients icon and the 
checkout button to order and wait for the ingredients to be delivered. 
In sum, the application showcases the following advantages: 

• Adaptique responsively switches the technique when the 
content of the user’s interest changes, assisting users to 
interact with a non-homogeneous environment. 

• Adaptique comprehensively considers the user’s performance 
in time, accuracy, comfort, and familiarity. When the task is 
easy enough to be used with a basic technique, Adaptique 
will stick to the basic one. When the task becomes harder to 
complete with that technique, it will automatically switch 
to a more advanced and suitable one. 

• Adaptique provides a smooth, consistent, and non-distracting 
transition by proactively switching the selection tool before 
users point toward new targets and ensuring that the tool 
remains consistent when engaging with nearby objects. 

5 Evaluation 
We conducted a VR user study to explore and evaluate the poten-
tial quantitative benefits of Adaptique across different scenarios, 
compared to using individual techniques. We hypothesized that re-
lying on a single selection technique would introduce performance 
trade-offs whereas Adaptique always achieve optimal performance. 

The study was done through a controlled task where partici-
pants were instructed to select one target among many distraction 
targets as quickly and accurately as possible in different environ-
ments. We collected performance metrics, including selection time, 
error rate, translational movement, and rotational movement. These 
correspond to our core performance objectives: selection time re-
flects speed, error rate reflects accuracy, and movement reflects 
ergonomic cost. To test our hypothesis, we evaluated Adaptique 
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using StickyRay and RayCursor as selection techniques. Raycasting 
was not included in this performance-based study because, theoret-
ically, its effective size is a lower bound and its effective amplitude 
is an upper bound, making it inherently outperformed by other 
techniques on performance metrics [3, 42], and thus unlikely to 
offer additional insight into the performance trade-offs we aimed 
to evaluate. 

5.1 Task 
Participants were tasked to select a target object amongst many 
distraction targets. We varied the size of the selectable target, the 
number of targets, and the density of the environment. Target sizes 
were specified in visual angles, with two conditions: large (2.5◦) 
and small (0.5◦), and four different environments that varied in 
distractors amount and density to cover both simple and extreme 
cases that users might encounter in XR. The selection target was a 
sphere and randomly placed within the target region but had to be at 
least 0.4 meters away from the boundary so that the target was not 
at the edge within the environment and 0.2 meters away from the 
center to ensure movement before selection. The distractors were 
primitive shapes (cubes, spheres, cylinders, and capsules), in pseudo-
random positions and sizes (2-4◦), and random rotations. They were 
semitransparent to minimize the effect of visual search in dense 
and occluded settings and were not intersecting with each other. 
The environments were also balanced, so that two environment 
types exploited the advantages of StickyRay, and similarly two 
environments exploited the advantages of RayCursor. Specifically, 
the environments were as follows: 

Sparse: In Sparse environment (Figure 6a), the target object and 
distractors were spawned within a 3𝑚 ×3𝑚 ×3𝑚 cubic region 
2 meters away from the participant. There were a total of 10 
objects: 1 target object and 9 distractors. The environment 
represented a simple case of selection. 

Dense: The Dense environment (Figure 6b) also consisted of a 
3𝑚 × 3𝑚 × 3𝑚 cubic region 2 meters away but contained 240 
objects, making the selection target densely surrounded by 
other objects. The target was likely to be partly occluded by 
distractors from the view of the participant. 

Flat: In Flat environment (Figure 6c), the spawning region was 
a 3𝑚 × 3𝑚 × 1𝑚 cubic region 2 meters away, resulting in a 
spread-out placement at a similar depth. We used a total of 
30 objects. 

Deep: In Deep environment (Figure 6d), the spawning region was 
a 1.5𝑚 × 1.5𝑚 × 4𝑚 cubic region 2 meters away. A total of 
30 objects were spawned. Though the density of the envi-
ronment (30 objects in 90𝑚 3 

volume) was the same as Flat 
environment, the arrangement of objects extended more in 
the depth direction. 

We pre-generated eight trials of each unique combination of 
target size and environment to use for all techniques. In sum, the 
study used the following independent variables and levels: 

• Techniqe: StickyRay, RayCursor, Adaptiqe 
• Target size: Small (0.5◦), Large (2.5◦) 
• Target environment: Sparse, Dense, Flat, Deep 

Figure 6: Environments used in the study, including (a) Sparse 
(b) Dense (c) Flat, and (d) Deep. 

5.2 Procedure 
Upon arrival, participants completed a consent form and a demo-

graphic questionnaire to gather information about participant age, 
gender, and VR/AR experience before being informed about the 
study. They were then positioned in a standing posture, equipped 
with the HMD and controller, and performed a practice session to 
familiarize themselves with each selection technique before starting 
the study session. During the study session, the participants per-
formed all selections with a single technique before moving on to 
the next technique. For each technique, a total of 64 trials (2 Target 
size × 4 Target environment × 8 repetitions) were presented in 
random order. The order of the techniques was counterbalanced 
with a balanced Latin square. For each trial, participants needed to 
select a central “ready” panel before starting the trial. This served 
as a rest period and ensured that users started the next trial from a 
central position. Participants were then tasked to select the target 
object that was highlighted in yellow as quickly and accurately as 
possible. The participants were unable to move on to the next trial 
until the correct object had been selected or a 15-second timeout 
had elapsed. After finishing all the trials with a technique, partici-
pants completed a questionnaire consisting of Likert-scale usability 
questions to capture their experiences. Study usability questions 
can be found in the supplemental material. Participants then rested 
before moving on to the next technique. The study was concluded 
with a questionnaire for user preferences and feedback. In total, 
we collected 18 participants × 3 Techniqe × 2 Target size × 4 
Target environment × 8 repetitions = 3456 selections. 

5.3 Apparatus and Participants 
The interaction techniques and Adaptique were implemented as 
described in section 3. The participants performed the tasks with 
the controller in their dominant hand. Selection was done with the 
trigger button, and depth cursor control with the trackpad. Since our 
study focuses on performance, we applied the following objective 
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weightings: 𝑘𝑆 = 0.5, 𝑘𝐴 = 0.2, 𝑘𝐶 = 0.2, and 𝑘𝐹 = 0.1. We applied 
the following normalized familiarity scores: 𝐹

StickyRay = 0.7 and 
𝐹RayCursor = 0.3 based on pilot testing. The rest of the parameters 
are the same as those in section 4. We recruited 18 participants 
on campus for the study (12 male, 6 female, 19-32 years old). One 
used VR/AR weekly, thirteen used VR/AR occasionally, and four 
had never experienced VR/AR before. 

5.4 Results 
Unless otherwise stated, the analysis was performed with a 3-way 
repeated measures ANOVA (𝛼 =.05) with Techniqe, Size, and 
Environment as independent variables. Before analysis, we re-
moved outlier trials. Trials were discarded if their selection times, 
translational movement, or rotational movement were beyond 3 
standard deviations from their respective grand mean. In total, 164 
out of 3456 trials were discarded (4.7%). We tested normality with 
the Kolmogorov-Smirnov test and QQ-plots. If extreme outliers 
were identified within the aggregated analysis data, defined as val-
ues beyond 𝑄𝑅 ± 3 × IQR, a winsorization process was applied. 
When the assumption of sphericity was violated, as tested with 
Mauchly’s test, Greenhouse-Geisser corrected values were used in 
the analysis. Bonferroni-corrected post hoc tests were used when 
applicable. The effect sizes were reported as partial eta squared (𝜂 2 

𝑝 ). 
Questionnaires were analyzed using Friedman tests, and Bonferroni-
corrected Wilcoxon signed-rank tests for post hoc analysis. 

5.4.1 Selection Time. We defined the selection time as the time 
elapsed from the start of the trial to the completion of the se-
lection. We applied a square-root transformation since the dis-
tribution of selection time was slightly positively skewed. Sig-
nificant main effects were observed for Techniqe (𝐹2,34=45.27, 
𝑝 <.001, 𝜂 2 

𝑝=.73), Size (𝐹1,17=72.83, 𝑝 <.001, 𝜂 2 
𝑝=.81), and Environ-

ment (𝐹1.74,29.50=374.63, 𝑝 <.001, 𝜂 2 
𝑝=.96). Post hoc analysis of Tech-

niqe main effect (Figure 7a) revealed that both Adaptique and 
StickyRay were faster than RayCursor (both 𝑝 <.001). 

Additionally, we found no significant three-way interaction. 
However, we found significant two-way interactions for Tech-
niqe × Environment (𝐹3.8,64.60=15.02, 𝑝 <.001, 𝜂 2 

𝑝=.47) and Tech-

niqe × Size (𝐹2,34=16.58, 𝑝 <.001, 𝜂 2 
𝑝=.494). Post hoc analysis of 

Techniqe × Environment results (Figure 7b) showed that in the 
Sparse environment, Adaptique and StickyRay outperformed Ray-
Cursor in speed (both 𝑝 <.001). In the Flat environment, StickyRay 
emerged as the significantly fastest technique, followed by Adap-
tique, with RayCursor being the slowest (all 𝑝 <=.003). In the Deep 
environment, StickyRay also proved to be faster than RayCursor 
(𝑝 =.032). The techniques did not differ significantly in the Dense 
environment. For all techniques, users were significantly quickest 
in the Sparse environment, followed by the Flat, Deep, and Dense 
environments, the latter resulting in the slowest performance (all 
𝑝 <.001). For the Techniqe × Size interaction (Figure 7c), both 
Large and Small targets were selected significantly faster with 
StickyRay and Adaptique compared to RayCursor (all 𝑝 <.001). 

5.4.2 Movement. We considered translational and rotational move-

ment for the analysis, defined as the total distance traveled and 
the angle of rotation of the controller from the start of the trial 
until the selection was completed. Since both metrics were severely 

positively skewed, we performed a reciprocal transformation to 
meet the normality requirement. 

For translational movement, there were significant main ef-
fects of Techniqe (𝐹2,34=29.48, 𝑝 <.001, 𝜂 2 

𝑝=.63), Size (𝐹1,17=32.81, 

𝑝 <.001, 𝜂 2 
𝑝=.66), and Environment (𝐹2.05,34.87=53.85, 𝑝 <.001, 𝜂 2 

𝑝=.76). 
Adaptique and RayCursor required significantly less movement 
compared to StickyRay (both 𝑝 <.001, Figure 7d). Furthermore, 
no significant three-way interaction was found. Significant two-
way interactions were observed for Techniqe × Environment 
(𝐹3.68,62.62=13.54, 𝑝 <.001, 𝜂 2 

𝑝=.46) and Techniqe × Size. Post hoc 
analysis of Techniqe × Environment (Figure 7e) showed that in 
the Sparse, Dense and Deep environments, Adaptique and RayCur-
sor required significantly less movement compared to StickyRay (all 
𝑝 <=.008). While in the Flat environment, we observed that only 
Adaptique required significantly less movement than StickyRay 
(𝑝 =.003). For Techniqe × Size interaction (Figure 7f), selecting 
both Large and Small targets with Adaptique and RayCursor re-
quired less movement than selecting with StickyRay (all 𝑝 <.001). 

Similarly, for rotational movement, the main effects were also sig-
nificant for Techniqe (𝐹2,34=6.42, 𝑝 =.004, 𝜂 2 

𝑝=.27), Size (𝐹1,17=54.03, 

𝑝 <.001, 𝜂 2 
𝑝=.76), and Environment (𝐹1.75,29.81=43.69, 𝑝 <.001, 𝜂 2 

𝑝=.72). 
Techniqe post hoc analysis (Figure 7g) showed that Adaptique 
again had an advantage, requiring significantly less rotational move-

ment than StickyRay overall (𝑝 =.007). However, no significant three-
way interaction was found. Significant two-way interactions were 
found for Techniqe × Environment (𝐹6,102=8.04, 𝑝 <.001, 𝜂 2 

𝑝=.32) 

and Techniqe × Size (𝐹1.45,24.67=6.21, 𝑝 =.012, 𝜂 2 
𝑝=.27). Regarding 

Techniqe × Environment (Figure 7h), in Flat environments, 
both Adaptique and StickyRay demanded significantly less rota-
tional movement than RayCursor (both 𝑝 <=.036). In contrast, in 
Dense and Deep environments, Adaptique and RayCursor required 
significantly less movement than StickyRay (all 𝑝 <=.043). Addition-
ally, in the Sparse environment, Adaptique required significantly 
less rotational movement than RayCursor (𝑝 =.006). For StickyRay, 
the Sparse environment resulted in significantly least rotational 
movement, followed by Deep and then Dense, with the Flat en-
vironment also requiring significantly less movement than Dense 
(all 𝑝 <=.026). For RayCursor and Adaptique, the Sparse and Deep 
environments again required significantly less movement, while 
Dense resulted in the significantly highest movement (all 𝑝 <=.01). 
For Techniqe × Size interaction (Figure 7i), Adaptique required 
significantly less rotational movement than StickyRay regardless of 
the target size, and required significantly less rotational movement 
than RayCursor when selecting Small targets (all 𝑝 <=.023). 

5.4.3 Error Rate. We defined an error as any trial with at least one 
missed selection or with a timeout. The error rate was determined 
by the number of errors divided by the total number of trials within 
the same condition. We included all trials in this analysis. We pre-
processed the data with an Aligned Rank Transform (ART) [63] 
and ART-C preprocessing for post hoc analysis when relevant [16]. 

We found significant main effects for Techniqe (𝐹2,34=30.27, 
𝑝 <.001, 𝜂 2 

𝑝=.64), Size (𝐹1,17=16.81, 𝑝 <.001, 𝜂 2 
𝑝=.50), and Environ-

ment (𝐹3,51=109.37, 𝑝 <.001, 𝜂 2 
𝑝=.87). Post hoc analysis (Figure 7j) of 

Techniqe revealed that using Adaptique and RayCursor resulted 
in significantly less error rate than using StickyRay (both 𝑝 <.001). 
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Figure 7: Mean selection time, translational movement, rotational movement, and error rate. Error bars represent the mean 95% 
confidence intervals. The symbol ∗ indicates 𝑝 <.05, ∗∗ indicates 𝑝 ≤.01, and ∗∗∗ indicates 𝑝 ≤.001. 

We found no significant three-way interaction for error rate. 
However, we observed significant two-way interactions for Tech-
niqe × Environment (𝐹3.51,59.72=13.16, 𝑝 <.001, 𝜂 2 

𝑝=.44) and Tech-

niqe × Size (𝐹2,34=5.8, 𝑝 =.007, 𝜂 2 
𝑝=.25). Further Techniqe × En-

vironment analysis (Figure 7k) revealed that in the Dense and 
Deep environment, StickyRay resulted in significantly higher error 
rate than RayCursor (𝑝 <=.023). While using StickyRay, selecting in 
a Dense and Deep environment results in significantly more errors 
than selecting in a Sparse and Flat environment (all 𝑝 <.001). Ana-
lyzing the Techniqe × Size interaction (Figure 7l), we found that 
when selecting Small targets, Adaptique and RayCursor resulted 
in significantly fewer errors than using StickyRay (all 𝑝 <=.003). 
When selecting Large targets, Adaptique resulted in a significantly 
lower error rate than StickyRay (𝑝 =.001). 

5.4.4 Summary of Quantitative Results. Our quantitative study 
results showed that StickyRay and RayCursor exhibit different 
performance advantages under different conditions and metrics. 

Table 1: Overview of selection technique comparison across 
performance metrics. ✓ indicates the techniques that were 
found most optimal for the given metric (as determined by 
statistical main effects). × indicates less performant tech-
niques. Results showed that Adaptique was among the most 
optimal techniques for all metrics. 

Metric StickyRay RayCursor Adaptique 

Selection Time ✓ × ✓ 
Trans. Movement × ✓ ✓ 
Rot. Movement × × ✓ 
Error rate × ✓ ✓ 

Overall, StickyRay is faster than RayCursor in all environments 
except for Dense environment, while RayCursor is more precise 
and requires less translational movement, especially in Dense and 
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Deep environments. In contrast, Adaptique consistently achieved 
optimal performance for all metrics in different contexts, as shown 
in Table 1. Although single techniques occasionally performed as 
well as Adaptique in specific metrics, they exhibited performance 
degradation in other metrics or a particular environment. For exam-

ple, although StickyRay performed as well as Adaptique in selection 
time, it required more movement and caused more errors, especially 
in Dense and Deep environments. Similarly, RayCursor performed 
comparably to Adaptique in terms of movement and accuracy but re-
quired significantly more selection time, and even worse in Sparse 
and Deep environment. Adaptique performed comprehensively 
well in all metrics, indicating that our system effectively balanced 
between different objectives and technique trade-offs. 

5.4.5 Questionnaire Results and Preferences. Friedman tests on us-
ability ratings showed significant results in perceived Precision 
(𝜒 2 (2)=7.26, 𝑝 <.05), Difficulty (𝜒 2 (2)=7.00, 𝑝 <.05), and Confidence 
(𝜒 2 (2)=6.26, 𝑝 <.05). However, Wilcoxon post hoc tests with Bon-
ferroni correction did not show any significant differences. 

The majority of the participants (ten) preferred Adaptique over 
the other techniques, while four chose StickyRay and four chose 
RayCursor. Adaptique was considered “fast”(P6), “precise” (P13), 
“easy to navigate” (P14), and "convenient" (P3), and combined the 
advantages of StickyRay and RayCursor, offering the most suitable 
technique for the environment (5 out of 18). P10 mentioned “both 
StickyRay and RayCursor are convenient in different situations. [..] 
So being able to switch to the other based on situations is preferred”. 
Meanwhile, although StickyRay was “intuitive”(P1) and “easy to 
use”(P12), the technique was less “precise” (P14) and “forces users 
to move more” (P8) in complex environments with target occlusion 
(expressed by 11 out of 18 participants). Regarding RayCursor, al-
though participants liked its “full control” (P5) of cursor depth in 
cluttered environments, it was considered “harder” (P1) and more 
“tiring” (P2) due to the “additional control required” (P8), especially 
when there were fewer objects (9 out of 18 participants). Some 
participants did not prefer Adaptique because it incorporated the 
technique they did not like, or due to “delayed” (P5), or “distracting” 
(P11) switching. For example, P1 said “Adaptique is uncomfortable 
because it incorporated RayCursor”. 

Most of the participants gave positive feedback on the switching 
(14 out of 18) due to its “consistency” (P8) and “accuracy” (P16) in 
technique selection, and “clear” (P14) feedback. Participants liked 
that Adaptique only switched techniques when needed and not in 
the middle of a selection. P8 mentioned that “the switching is pretty 
handy and intelligent, selecting the most efficient mode almost 
all the time. The mode does not vary constantly and is consistent 
enough for the user to get used to the selection.” Overall, visual, 
audio, and tactile feedback helped the participants in “notifying the 
technique change” (P4), and “improving the experience” (P2). 

5.4.6 Technique Switching Analysis. To validate Adaptique’s switch-
ing proficiency, we analyzed its switching behavior across all trials. 
One or more switches occurred in 53. 65% of the trials. In other 
trials, the current technique was considered optimal, indicating 
that switching occurs only when Adaptique deems it necessary. 
For technique switching trials, we observed that the number of 
switches was low, with a mean of 1.1 among the trials involving 
switching. These results indicate Adaptique’s stability in selecting 

technique, as too sensitive switching may be confusing for users. 
Adaptique also showed strong consistency in selecting the tech-
nique according to the current context. Specifically, 99.6% of Deep 
environment and 100% of Dense environment trials concluded with 
RayCursor, while 98.3% of Flat and 96.2% of Sparse environment 
trials concluded with StickyRay. 

In terms of timing, we found that the first switch typically oc-
curred early in the interaction, on average at 0.37 seconds (variance 
= 0.08) after the trial began, compared to an average total task 
duration of 1.67 seconds. To further investigate the temporal rela-
tionship between switching and user movement, we compared user 
movement with the timing of switches. In most cases, the switch 
occurred before the onset of their pointing action. These results 
suggest that Adaptique is able to proactively switch techniques 
before users initiate a pointing movement, thus minimizing disrup-
tion and cognitive load. However, we also observed a small number 
of cases where switching occurred during or after the initial ballis-
tic movement, possibly due to occasional delays in calculations or 
users pointed beyond the trial area. In these instances, users were 
usually able to complete the selection without initiating another 
pointing movement. However, in rare cases (8.5% of the trials in 
which a switch occurred), a second high-speed movement occurred, 
likely as a corrective adjustment following the delayed switch. 

Overall, these findings indicate that Adaptique switches tech-
niques efficiently, consistently, and early enough to assist users 
without imposing cognitive overhead or disruption to movement. 

6 Discussion 
We introduced Adaptique to address the selection challenges in-
herent in dynamic virtual environments. Adaptique adapts the 
selection technique according to a wide range of environments and 
user states based on a computational approach of extracting con-
textual information that effectively captures scenarios where users 
perceive objects as overlapping, too small, arranged differently, etc. 
Adaptique also considers different aspects of performance built 
from established selection models and balances these factors to 
align with the design needs. 

Our results underscore the need for adaptivity, as using the same 
technique in various scenarios can introduce trade-offs that lead to 
difficulty and negatively impact performance and user experience. 
For example, although RayCursor is effective in precisely selecting 
objects, especially in Dense and Deep environments, it is gener-
ally slower due to its complexity in selecting objects, especially in 
Sparse and Flat environments. In contrast, Adaptique consistently 
achieved optimal results in terms of selection time, movement, and 
error rate in different contexts (Table 1). Although single techniques 
can perform as well as Adaptique in specific metrics, they typically 
exhibit performance degradation in other metrics or particular en-
vironments. These findings suggest that our method successfully 
identifies and applies the most suitable technique for each scenario 
to balance objectives and technique trade-offs. 

Our application showcases Adaptique’s utility and applicability 
in a dynamic and practical setting. Adaptique can automatically 
switch the selection tool to a more suitable one when the task 
becomes more difficult to complete with the current tool. For ex-
ample, selecting book layouts on the bookshelf is easy with normal 
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RayCasting, while selecting books stacked on the table is difficult 
because they can occlude one another and require extra precision. 
Therefore, when users point toward the stack of books, Adaptique 
smoothly and proactively switches to RayCursor, ensuring smooth 
transitions and consistent tool usage in the new context. This adap-
tive behavior is driven by the interaction space spreading out from 
the pointing direction, which gradually captures the context of the 
user’s attention. In addition, the thresholding mechanism ensures 
consistent improvement across frames before confirming a switch, 
preventing users from experiencing inconsistent switching. 

6.1 Contextual Information Extraction 
Adaptique effectively extracts fundamental contextual information 
as the basis for adaptation. In contrast to previous work that only 
extracts density information [8], we further parameterize target re-
lationships, such as occlusion, to model objectives more accurately. 
This consideration is crucial because the performance depends on 
an object’s effective size rather than its dimensions. Still, although 
our current approach considers occlusion relative to the controller’s 
perspective as this directly influences performance, this may not 
align with how users perceive occlusion. For example, an object 
that appears occluded from the user’s sight might not be occluded 
according to the controller’s viewpoint. This discrepancy can create 
a mismatch of the optimal technique between user expectations and 
the model’s behavior, degrading the user experience more than the 
performance benefits justify. Future work could explore integrating 
perceived contextual information to enhance user intuitiveness. 

Additionally, although Adaptique is currently implemented in 
VR, it is intended for future extension into mixed reality environ-
ments, where physical interactable objects are rigid and the sur-
roundings are more dynamic and unpredictable. However, there 
remain limitations to the tracking of the 3D positions and shapes 
of real-world objects. We believe that future improvements in ob-
ject tracking technologies will overcome these limitations [32, 53], 
allowing more use cases to benefit from Adaptique. 

6.2 Optimization Objectives 
Adaptique integrates multiple objectives that balance performance 
(e.g., speed, accuracy) and usability (e.g., comfort, familiarity). This 
formulation, combined with contextual modeling, generalizes well 
to diverse XR scenarios. Building on this foundation, Adaptique 
can be further expanded to include more contextual information 
and objectives. For example, including the moving speed of tar-
gets or users [27, 38, 44] can be beneficial in scenarios such as 
public transportation, interactions with moving targets like people 
and animals, and gaming. Additionally, the contextual informa-

tion could be expanded to account for factors accumulated over 
time, such as cumulative fatigue [17, 30] and workload [41] during 
prolonged interactions. More objectives can also be considered to 
accommodate different design requirements, such as social accep-
tance [15, 39, 62], engagement [51], sensor error [56], available 
range of motion [11, 62], and so on. 

To enable adaptation in real-time, our objectives include certain 
assumptions and simplifications. For example, the body param-

eters for calculating comfort scores rely on average human data 
instead of individual data. While this simplification might introduce 

deviation from using individual parameters, the error affects all 
techniques equally and, therefore, has little impact on our adapta-
tion. Alternatively, in the future users could also input their specific 
values for more precise estimation. In addition, we assumed users 
would select the target with a specific movement trajectory due 
to the challenges of predicting user motions. Though users might 
not perform the selection in this manner, this approach captures 
the general trends of exertion and fatigue and responsively adapts 
to users’ posture changes. Future work could include a movement 
prediction model based on velocity profiles [28]. Our approach to 
assigning familiarity scores through pilot testing proved effective 
and practical in our study, but it may have limitations in scalability 
and subjectivity, as further pilot testing is required for different sets 
of techniques. Further research could develop a more systematic 
approach to assigning familiarity scores, such as inferring values 
from user preferences collected through voting on various bench-
mark scenes. Another direction could be training machine learning 
models to predict the complexity of selection techniques using 
behavioral data, such as cognitive load metrics [48]. 

6.3 Selection Techniques 
Currently, we considered raycasting-based selection techniques 
as candidates that address various scenarios effectively. Future 
explorations could include more diverse pointing-based techniques, 
such as those with different modalities [9, 57]. This would open 
up a vast design space to integrate complementary techniques. For 
example, switching the technique to gaze when the arm is tired or 
occupied can be useful in prolonged use. However, modifications 
to the current objective score calculations would be necessary to 
ensure these scores remain comparable across different modalities. 

To reduce confusion and required training, we limited the num-

ber of techniques to one per selection scenario. Although having 
more selection techniques as candidates increases the granularity 
of optimal choices, we suggest it could lead to excessive switchings 
that distract the user. While this limitation reduces distraction, fu-
ture exploration could provide alternative techniques for the same 
selection scenario to allow users to customize their set of techniques. 
This flexibility would address feedback from study participants who 
did not prefer Adaptique as it included techniques they disliked. 

Additionally, we encountered challenges in modeling advanced 
selection techniques. For example, RayCursor, which is controlled 
by a combination of ray movement and swiping on the trackpad, 
makes the user interaction pattern unpredictable. Thus, we simpli-

fied the model by considering only the movement of the ray and 
assuming the cursor remains at the correct depth. This simplifica-

tion might overestimate the technique’s performance as the swiping 
effort is not modeled, and we assume the calibration effect of the 
familiarity score mitigated this deviation. Future research could 
explore more sophisticated models for advanced techniques [52] or 
introduce a calibration method for the model that could not fully 
describe a technique. Another possible approach could be to employ 
data-driven methods to better understand the relationship between 
human behaviors and performance metrics. 
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6.4 Further Adaptation Considerations 
Our qualitative result showed that participants were satisfied with 
the switching due to its consistency and accuracy in technique 
selection. Similarly, our quantitative results showed no significant 
performance degradation from potential switching or distraction 
side effects, as Adaptique consistently performed among the best 
across conditions. This outcome was achieved by optimizing sys-
tem responsiveness and adjusting sensitivity through a window 
threshold technique to minimize delays and unnecessary switching. 
To further enhance switching, we could combine the current system 
with an intention prediction model to decide the optimal switching 
timing [66]. 

However, even though we did not identify the significant cost of 
switching, there might still exist subtle side effects that our current 
evaluation could not adequately capture. This raises the possibility 
that Adaptique, under optimal conditions, might outperform indi-
vidual techniques, rather than merely showing comparable perfor-
mance to the most effective one. To further investigate this, future 
studies could focus on quantifying switching costs by measuring 
human response time and cognitive load. These measures could 
also be analyzed in relation to the complexity of the techniques 
being switched or the degree of disparity between them [55]. 

7 Conclusion 
We presented Adaptique, an online multi-objective model that adap-
tively switches to the most optimal VR selection technique based on 
user context and environment combined with human performance 
objectives. The results show that Adaptique can significantly im-

prove selection time, movement, and error rate against the use of 
singular techniques. In addition, a majority of participants preferred 
Adaptique who expressed a positive sentiment for switching tech-
niques when exposed to various environments. In sum, Adaptique 
shows that it is beneficial to switch between techniques to gain 
the most performance across multiple environments. Furthermore, 
considering multiple objectives is important to reflect the trade-offs 
between different techniques. Our work opens up further research 
on additional selection objectives, techniques, and modalities to 
accurately model and adapt to interactions commonly needed in 
our daily lives. 
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